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Magnetic susceptibility of relativistic Fermi gas 

E M Chudnovsky 
Gagarin AV. 199, fl 17,310080, Kharkov, USSR 

Received 28 October 1980, in final form 9 March 1981 

Abstract. ‘The magnetic susceptibility of a degenerate relativisitc Fermi gas is obtained for 
charged fermions with anomalous magnetic moments. 

The expression for the magnetic susceptibility of the non-relativistic degenerate 
electron gas is well known in the theory of metals (see for example Ziman (1972)). It 
consists of two parts corresponding to two different physical effects. The first of them is 
connected with the behaviour of spin moments in the external magnetic field (Pauli 
paramagnetism (Pauli 1927)). The second is the result of the circular motion of charges 
in the magnetic field (Landau diamagnetism (Landau 1930)). For non-relativistic 
fermions the paramagnetic and diamagnetic susceptibilities can be independently 
calculated. This is not true for the relativistic case. Magnetic properties of the 
relativistic Fermi gas are of interest because degenerate relativistic electrons and 
nucleons form white dwarfs and neutron stars (see for example Weinberg (1972)). As is 
known, the nucleons have anomalous magnetic moments which also contribute to the 
magnetic susceptibility. In this connection we consider the Lagrangian (Gell-Mann 
1956, see also Bjorken and Drell 1965) including the dipole interaction between the 
fermion 4 and the external electromagnetic field A,, 

(1) L = 4{iy,(a, - iqeA,) + i(ke/8M)[y,, yYIFWI, -MI$, 
where FFY = a,A, -a&,, M is the fermion mass, -e is the charge of an electron and y, 
are Diracmatrices. For an electron q = -1, k = 0. For aproton q = + I ,  k = +1.79. For 
a neutron q = 0, k = -1.91.t 

In a constant homogeneous magnetic field 

H = curl A = constant, A0 = 0, (2) 
the energy levels for the Lagrangian (1) were obtained exactly (Tsai and Yildiz 1971): 

E’ = P ~ + { ( ~ ~ / ~ M ) U H + [ M ’ + I ~ I ~ H ( ~ ~ +  ~)+qeu-~]~’’ ) ’  (3) 
where p H  is the momentum projection on the magnetic field H, 1 = 0, 1, 2 , .  , , and 
U = k l  are the orbital and spin quantum numbers. 

The thermodynamic potential density of the fermion gas has the form 

C l = - T ~ l n { l + e x p [ ( ~ - ~ ~ ) / T ] }  
i 

t The step of orbital quantisation in the magnetic field 27rlqleH+ 0 as q + 0. 
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where 
a weak magnetic field 

are particle energy levels, p is the chemical potential and T is temperature. In 

a = a0 - 4XH2 ( 5 )  

where x is the magnetic susceptibility and does not depend on the magnetic field. For 
the calculation of a, the sum (4) can be replaced by an integration over energy E and 
summation over spin (+ and orbital 1 quantum numbers 

where vu is the level density of fermions which have various spin projections in the 
direction of the field H. 

In the plane normal to the magnetic field, fermions move in closed orbits, their area 
being quantised in the momentum space according to the formula 

Si = d 2 1 +  1)lqleH. ( 7 )  

vu = [/qleH/(27~))~] dpg) /d& (8) 

Taking this into account, one can immediately obtain the level density 

where 
2 2 1/2 P S I = * ( &  - U u )  (9) 

with 

a, = a(keH/2M)  + { M 2  + 2[1q [ I  + t(1q I + c~q)]eH}~" .  (10) 
Substituting (8) into (4), integrating by parts and considering T to be small compared 
with the Fermi energy eF, we have 

where 

(12) 

(13) 

2 1/2 
fcr(l) = &F(& - a ;)"'- a? ln{[&F $- ( E ;  - a U) ]/am} 

and 

1 gix = [ ( E F  - akeH/2M)' - M2/21q JeH] - (14 + oq)/2/q I. 
In the case of a weak field H (l:ix >> l ) ,  one may replace the sum in the expression 

(11) by an integral, using the Euler-McLaurin summation formula 

where f '"'(x)  = d"f/dx" and Bm are the Bernoulli numbers. Using this formula, and 
after a number of simple transformations, we obtain to order H 2  
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where we have used f U ( l E i x )  = fb( lEix)  = 0 and 

It may be easily seen that the integral term in (15) can be written in the form 

and therefore it contribution to the thermodynamic potential Ro is independent of the 
magnetic field. 

The variation of the fermion thermodynamic potential when a weak field is switched 
on is given by the second sum in (15). Using the expressions (12) and (13) for f c ( l )  and 

we find this variation of order H2.  The magnetic susceptibility is then given by 

where uF is the Fermi velocity. 

be represented as a sum of paramagnetic and diamagnetic terms 
In the non-relativistic approximation (uF<< 1) the expression for susceptibility may 

X = (e2V~/4V2)[(k + ~ 7 ) ~ - 4 q ~ ] .  (19) 
For k = 0, q = -1 and these terms coincide with well known expressions (Pauli 1927, 
Landau 1930) for the electron gas. 

The total variation of the thermodynamic potential connected with the appearance 
of the magnetic field inside the Fermi gas has the form 

S R = - + ~ H ~ + $ H ~  (20) 

where the last term represents the self-energy of the magnetic field. The inequality 
SR > 0 gives the well known electrodynamic condition 

X < l  (21) 

for the stability of matter with respect to the spontaneous magnetic field produced by 
the ordering of the spin and orbital moments. 

The stability of the relativistic electron gas with respect to the spontaneous 
magnetisation was studied in Canuto and Chiu (1968). The present formula for 
susceptibility seems to indicate that their discussion is not correct. As can be seen from 
(18), the stability of the electron gas (k = 0, q = -1) is lost in the ultrarelativistic 
(unrealistic as it is) limit u F - +  1. 

In connection with our results, we also note that the nucleon density phase transition 
into the state with M +  0 (vF+ 1) studied by Lee and Wick (1974) (see also Krive and 
Chudnovsky (1978)) can lead to the spontaneous magnetisation of the neutron star. 

I am grateful to Professor A Vilenkin for his help in publication of this work. 
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